FINDING NONOVERLAPPING SUBSTRUCTURES OF A SPARSE
MATRIX*

ALI PINAR! AND VIRGINIA VASSILEVSKA*

Abstract. Many applications of scientific computing rely on computations on sparse matrices,
thus the design of efficient implementations of sparse matrix kernels is crucial for the overall effi-
ciency of these applications. Due to the high compute-to-memory ratio and irregular memory access
patterns, the performance of sparse matrix kernels is often far away from the peak performance on a
modern processor. Alternative data structures have been proposed, which split the original matrix
A into Ay and Ag, so that A4 contains all dense blocks of a specified size in the matrix, and A,
contains the remaining entries. This enables the use of dense matrix kernels on the entries of A,
producing better memory performance. In this work, we study the problem of finding a maximum
number of nonoverlapping rectangular dense blocks in a sparse matrix, which has not been studied
in the sparse matrix community. We show that the maximum nonoverlapping dense blocks problem
is NP-complete by using a reduction from the maximum independent set problem on cubic planar
graphs. We also propose a 2/3-approximation algorithm for 2 X 2 blocks that runs in linear time in
the number of nonzeros in the matrix. We discuss alternatives to rectangular blocks such as diagonal
blocks and cross blocks and present complexity analysis and approximation algorithms.

Key words. Memory performance, memory-efficient data structures, high-performance com-
puting, sparse matrices, independent sets, NP-completeness, approximation algorithms.

1. Introduction. Sparse matrices liein the hearts of many computation-intensive
applications such as finite-element simulations, decision support systems in manage-
ment science, power systems analysis, circuit simulations, and information retrieval.
The performances of these applications directly rely on the performances of the em-
ployed sparse matrix kernels . The memory performance of sparse matrix operations
on modern processors however, is often a bottleneck due to the irregular memory-
access patterns of sparse matrix operations, and extra memory load operations re-
quired to exploit sparsity. The memory-performance bottleneck is becoming more
crucial everyday, arguably becoming the most important problem in high perfor-
mance computing. To overcome this memory bottleneck designing alternative data
structures for sparse matrices that are memory friendly has been investigated. One
common approach in these efforts is to exploit the special substructures in a sparse
matrix, such as small dense matrices, to decrease the number of extra load operations.
In this paper, we study the problem of finding a maximum number of nonoverlapping
substructures in a sparse matrix, with the objective of improving the effectiveness of
alternative sparse matrix data structures that exploit dense blocks.

Conventional data structures for sparse matrices have two components: an ar-
ray that stores floating-point entries of the matrix and arrays that store the nonzero
structure (i.e., pointers to the locations of the numerical entries). Exploiting spar-
sity invariably requires using pointers, but pointers often lead to poor memory per-
formance. One reason for the poor memory performance is that pointers cause an
irregular memory access pattern and thus poor spatial locality. Another important
reason, which is often overlooked, is the extra load operations. Each operation on a
nonzero entry requires loading the location of that nonzero before loading the actual

*This work was supported by the Director, Office of Science, Division of Mathematical, Infor-
mation, and Computational Sciences of the U.S. Department of Energy under contract DE-AC03-
76SF00098.

tCorresponding author. Computational Research Division, Lawrence Berkeley National Labora-
tory, (apinar@lbl.gov).

} Computer Science Department, Carnegie Mellon University (virgi@cs.cmu.edu).

1



2 V. Vassilevska and A. Pinar

r r =z r x x
x x x x
r x = r +
r x r x
r r =z r x x
A = Ara + Arq

Fic. 1.1. Matriz splitting.

floating point number. For instance, sparse matrix vector multiplication, which is one
of the most important kernels in numerical algorithms, requires three load operations
for each multiply-and-add operation. And it has been observed that this overhead
might be as costly as the floating point operations [5].

Recent studies have investigated improving memory performance of sparse matrix
operations by reducing the number of extra load operations [5, 8, 9, 10]. Toledo [9]
studied splitting the matrix as A = Ay5 + A11, where A5 includes 1 x 2 blocks of the
matrix (two nonzeros in consecutive positions on the same row), and Aj; covers the
remaining nonzeros, as illustrated in Fig. 1.1. Notice that it is sufficient to store a
pointer for each block in Ay5. In [8], Pinar and Heath studied the reordering problem
to increase the sizes of these blocks. They proposed a graph model to reduce the
matrix ordering problem to the traveling salesperson problem. Vuduc et al. studied
various blocking techniques to decrease load operations, and improve cache utiliza-
tion [10]. Significant speedups in large experimental sets have been observed, which
gives motivation to search for larger blocks in the matrix for further improvements
in performance. Splitting operation can be generalized to exploit arbitrary substruc-
tures. For instance, one can split the matrix into A = Ag+ As, where Ay contains all
specified substructures, and A; contains the remaining entries. Clearly, for a speci-
fied substructure, having more entries in A4 merits fewer load operations, thus better
memory performance. This calls for efficient algorithms to find a maximum number
of nonoverlapping substructures in a sparse matrix. A greedy algorithm is sufficient
to find a maximum number of nonoverlapping m x n dense matrices when m = 1 or
n = 1. However, this problem is much harder when m,n > 2.

In this work, we study the problem of finding a maximum number of nonover-
lapping substructures of a sparse matrix, which we call the mazimum nonoverlapping
substructures problem. We focus on m x n dense blocks as a substructure, due to
their availability in sparse matrices arising in various applications, and effectiveness
in decreasing extra load operations. We call this problem the mazimum nonoverlap-
ping dense blocks problem. In the next section, we define the problem formally and
investigate its relation to the maximum independent set problem. We define a class
of graphs where the independent set problem is equivalent to the maximum nonover-
lapping dense blocks problem. In Section 3, we use this relation to prove that the
maximum nonoverlapping dense blocks problem is NP-complete. Our proof uses a
reduction from the maximum independent set problem on cubic planar graphs and
adopts orthogonal drawings of planar graphs. Section 4 presents an approximation
algorithm for the problem. Since we are motivated by improving memory performance
of sparse matrix operations, we are interested in fast and effective heuristics for the
preprocessing cost to be amortized over the speedups in subsequent sparse matrix
operations. Our algorithms require only linear time and space, and generate solutions



Finding dense blocks of a sparse matrix 3

whose sizes are within 2/3 of the optimal. In Section 5, we discus alternative patterns
to rectangular blocks. We show that the problem of finding diagonal blocks can be
reduced to that of finding rectangular blocks, and thus the problem is NP-complete,
and our 2/3-approximation algorithm is valid for diagonal blocks as well. We also
discuss the cross blocks, prove that finding a maximum set of nonoverlapping cross
blocks is NP-complete, and generalize our results for variations of the cross block. We
present some open problems in Section 6 and conclude with Section 7.

The problem of finding nonoverlapping dense blocks of a sparse matrix has not
been studied in the sparse-matrix community. We have been recently aware of the
work by Berman et al. [2], where a similar problem is discussed as the optimal tile
salvage problem. In the optimal tile salvage problem, we are given an VN x VN
region of the plane tiled with unit squares, some of which have been removed. The
task is to find a maximum number of functional nonoverlapping m x n tiled rectangles.
The difference between our problem and the optimal tile salvage problem is that in
the tile salvage problem the tiles are allowed to be in any orientation (m x n or n x m),
whereas in our case the orientation is fixed (only m x n). The two problems coincide
in the case of square dense blocks. Berman et al. proved the NP-completeness of
the tile salvage problem, however their proof exploits the flexibility in the orientation
of the dense block, and thus our proof is significantly different. Berman et al. also
describe an (1 — ¢)-approximation algorithm, which would work for square blocks,
for € = O(1/\/8log M), where M is the optimal solution value. Their algorithm
is based on maximum planar H-matching which runs in O(N'*?) steps for small
8§ > 0. Baker [1] also has an algorithm for the case of square blocks, which runs
in O(8*N)-time and O(4* N) space and produces a (k — 1)/k-approximation. Both
of these algorithms however are complex and hard to implement. The greedy 2/3-
approximation algorithms we propose are very simple. It requires linear time and
space, with very small constant factors in the time and space bounds. Our algorithm
requires only one pass through the matrix, and thus is I/O-efficient.

2. Preliminaries. In this section we define the problems formally, and present
definitions and some preliminary results that will be used in the following sections.

2.1. Problem Definition. This work investigates the problem of finding a max-
imum number of nonoverlapping matrix substructures of prescribed form and orien-
tation.

DEFINITION 2.1. An m X n pattern is a 0-1 m x n matriz 0. An oriented o-
substructure of ¢ matriz A is an m x n submatric M in A so that M(i,5) # 0 if
o(i,j)=1for1 <i<m, and 1 < j < n. Two substructures M and N overlap if
they share nonzero entry e in M with coordinates (ipr, jar) in M and (iy,jn) in N
and O'(iM,jM) = O'(iN,jN) =1.

Given a particular pattern o, we define the mazimum nonoverlapping o-substructures
(MNS) problem as follows.

Given an M x N matriz A and integer K, does A contain K disjoint
o-substructures?

In this paper, we mostly focus on dense blocks, due to their simplicity, and their
effectiveness in speeding up sparse matrix operations. A dense block of a matrix is a
submatrix of specified size all of whose entries are nonzero, i.e., 1t is a o-substructure
where o is the all 1s matrix. We identify a dense block with its upper left corner.
Two blocks overlap if they share a matrix entry. Formally,



4 V. Vassilevska and A. Pinar

Given an M x N matriz A = (a;;), we say b;; is an m x n dense
block in A iff apg £ 0 for all k and | such that i <k <i+m< M
and j <1< j+n < N. Two m x n blocks b;; and by overlap iff
t<k<i+mand j<IlI<j+n, ork<i<k4+mandl <j<l+n.

We define the mazimum nonoverlapping dense blocks (MNDB) problem, which
restricts the MNS problem to dense blocks as follows.

Given an M x N matriz A, positive integers m and n that define the
block size, and a positive integer K, does A contain K disjoint m xn
dense blocks?

2.2. Intersection Graphs. It is easy to find all specified patterns in a matrix,
however what we need is a subset with nonoverlapping blocks. In this sense, the MNS
problem is related to the mazimum independent set (MIS) problem, which is defined
as finding a maximum cardinality subset of vertices I of a graph (7, such that no two
vertices in I are adjacent. Below we define an intersection graph, which reveals the
relation between the independent set and the nonoverlapping blocks problems more
clearly.

DEFINITION 2.2. A graph G is an intersection graph of the o-substructures of a
matriz A if there s a bijection ¢ between the vertices of G and the substructures of
A, such that there is an edge in G between ¢(s1) and ¢(s2) if and only if sy and s,
overlap in A.

We will use G(A, m, n) to refer to the intersection graph of dense m x n blocks in
matrix A. A maximum independent set on G(A4,m,n) gives a maximum number of
nonoverlapping blocks in A, thus the MNDB problem can be reduced to the maximum
independent set problem, which is known to be NP-complete [4]. However it is impor-
tant to note that the block intersection graphs have special structures, which can be
exploited for efficient solutions. For instance, a greedy algorithm is sufficient to find
a maximum number of nonoverlapping 1 x n and m x 1 blocks, since these problems
reduce to a family of disjoint maximum independent set problems on interval graphs.
In the remainder of this section, we define the class of graphs that constitute block
intersection graphs. An intersection graph of a set of 2 x 2 dense blocks is an induced
subgraph of the so called X-grid which consists of the usual 2 dimensional grid, and
diagonals for each grid square. In general, the intersection graph of a set of m x n
dense blocks is an induced subgraph of the X,,,, grid. Below, we first define an X,,,
grid, and then restrict the definition to define the graph class XT',,, that represent
graphs that can be an intersection graph for a matrix.

DerFINITION 2.3. An M x N X, grid s a graph with a vertex set V and an
edge set I/, so that

o V={u; 1 <i<M-ml<j<N-n+1}

OE:{(UZ']',UM)Z1§i,]€§M_m+1;1§jal§N_n+1:|i_k|<
m;|j — | <n}

In an X,,, grid, vertex v;; corresponds to the block b;; in the matrix, and edges
correspond to all possible overlaps between blocks. Note that not all induced sub-
graphs of the X,,,, grid are intersection graphs of a matrix. We define a graph class
XT'ppn in which each graph corresponds to an intersection graph G(A4, m, n) of the set



Finding dense blocks of a sparse matrix 5

of m x n dense blocks of a matrix A, and each such intersection graph is in the class.

DEFINITION 2.4. A graph G = (V, E) is in the graph class XTp,y if and only if
it 15 an induced subgraph of an Xy, grid and has the closure property so that v;; € V

of
Vi<k<i+mj<Il<j+n, ug:s<k<s+mandt<I<t+n

The closure property enforces that there is a vertex in the graph for each block in
the matrix. Being an induced subgraph of an X grid guarantees that there is an edge
for each overlap. The graphs in this class are exactly the intersection graphs of the
m X n blocks in a matrix, thus finding a maximum independent set of a graph in this
class 1s equivalent to solving the MNDB problem of the corresponding dense matrix
blocks. This claim is formalized by the following lemma.

LEMMA 2.1. An wnstance of the MNDB problem for finding m xn nonoverlapping
dense blocks in a matriz A 1s polynomially equivalent to an instance of MIS for a graph
in XTpp .

Proof. As we discussed earlier, the MNDB problem can be reduced to the problem
of finding an independent set on its intersection graph. Here we show the one-to-one
correspondence between intersection graphs, and graphs in XT',,,. Remember that
each dense block b;; corresponds to the vertex v;; in G(A, m, n). By definition of the
class XTpn, G(A,m,n) € XTy,,, thus any instance of an MNDB problem can be
reduced to an independent set problem in a graph in XT,,,.

Given a graph G in XT,,,, define A = (a;;), so that a;; is a nonzero iff k < i <
k+m and [ < j < [+ n for some vertex vg; in G. Observe that any dense block in
A must be represented by a vertex in G due to the closure property. Also, for any
two adjacent vertices in (G, corresponding blocks intersect in A, and no other blocks
overlap, due to the definition of edges in X,,,,. Thus, a maximum-cardinality subset
of nonoverlapping blocks in matrix A corresponds to a maximum independent set in
GeXly, 0O

In this paper we will use the graph class XI55 to prove the NP-completeness of
the MNDB problem for 2 x 2 blocks. Our proof can be generalized to arbitrary sized
blocks, showing the NP-completeness of the MNDB problem for m x n blocks, and
hence the NP-completeness of the maximum independent set problem for graphs in
class XT',,,.

The following lemma shows that removing a subset of the vertices along with
their neighbors preserves the characteristics of the graph, providing the basis for
greedy approximation algorithms as will be presented in Section 4.

LEMMA 2.2. Let G = (V, E) be a graph in XTyny,, S CV a subset of vertices,
and N(S) ={u | (u,v) € E, v €S, u ¢ S} be the neighborhood of S in G. Then the
graph G’ induced by V \ (S UN(S)) is still in XT .

Proof. Removing a vertex and its neighbors in G corresponds to removing all
nonzeros in a bl ock in the corresponding matrix. The remaining graph is the inter-
section graph of the resulting matrix. O

2.3. Planar Graphs and Orthogonal Drawings. A graph G is planaerif and
only if there exists an embedding of G on the sphere such that no two edges have a
point in common besides the vertices. GG is cubic planar if every vertex has degree 3.

An orthogonal drawing of a graph (G 1s an embedding of GG onto a 2-dimensional
rectangular grid such that every vertex is mapped to a grid point and every edge is
mapped to a continuous path of grid line segments connecting the end points of the



6 V. Vassilevska and A. Pinar

2 y 3
mark
T 4

bend 7

Fi1Gc. 2.1. Planar orthogonal drawing

edge. When G is planar, the edge paths do not cross. An example of orthogonal
embedding of a planar graph is illustrated in Fig. 2.1. As seen in this figure, we refer
to a grid point where an edge path changes direction as a bend. No two edges share a
grid segment or a bend, and no edge path can go through a vertex unless this vertex
is an end point of the edge corresponding to the path and is an end point of the path
itself. A mark in an orthogonal drawing of a graph is a grid point that an edge passes
through,but not a vertex in the original graph. The following result has been reported
by de Fraysseix et al. [3], Kant [6], and Papakostas and Tollis [7].

THEOREM 2.3. Fwvery planar graph G with vertex degree at most 4 can be drawn
orthogonally with at most [ 5] + 1 bends on an 5| x | 5] grid in linear time.

In particular, this shows that every cubic planar graph G = (V, E) can be embed-
ded orthogonally in an O(|V|) x O(|V]) grid in polynomial time. The NP-completeness
proof in the next section uses a reduction from the maximum independent set (MIS)

problem on cubic planar graphs, and adopts orthogonal drawings.

3. Complexity. This section proves that the MNDB problem is NP-complete
for 2 x 2 blocks. We use a reduction from the independent set problem on cubic planar
graphs, which is NP-complete [4]. Throughout this section, we let XT' denote XT'5.
The next lemma explains how we can retain independent set characteristics of the
problems after transformations.

LEMMA 3.1. Let G = (V, E) be a graph, and u,v be two adjacent vertices in G,
so that all neighbors of u besides v are also neighbors of v. Let G' = (V' E') be the
graph G after vertex v is removed. The size of the mazimum independent set in G is
equal to the size of the maximum independent set in G'.

Proof. If vertex v is in a maximum independent set I, then none of its neighbors
are in I. Thus I' = TU {v} \ {u} is an independent set in GG and in G’ of the same
size as [. O

COROLLARY 3.2. Let G € XT contain the graph H in Fig. 3.4(a) as an induced
subgraph so that all vertices except for possibly vy, vs and vs have all of their neighbors
in H. Then any instance (G, K} of MIS is equivalent to the instance (G', K) of MIS
for the graph G' = G\ {w, ws}.

Proof. By Lemma 3.1, we can remove w; from the graph since all neighbors of
x1 are neighbors of wy as well. The reduced graph is illustrated in Fig. 3.4(b). Again
using Lemma 3.1, we can remove ws since it covers all neighbors of 5. Note that
we can apply the same transformation to add vertices w; and ws to the graph in
Fig. 3.4(c). O

The following lemma describes how edges of a graph can be replaced by paths,
while preserving independent set characteristics.



Finding dense blocks of a sparse matrix 7

Fi1Gc. 3.1. Enlargement operation for K =1

LEMMa 3.3. Let G = (V,E) be a graph and e = (v;,v;) € E be an edge. Let
Ge 1, be the graph G with the edge e substituted by a stmple path v;, w1, wa, ..., wa, v;
where k € Z7 and w; are new vertices not in the original graph. Then there exists an
ndependent set of size K in G if and only if there exists an independent set of size
K+kinGep.

Proof. We present the proof for £ = 1, and the result follows by induction.
Sufficiency: Let I be an independent set in G, then either v; & I or v; ¢ I. Without
loss generality, assume v; ¢ I, then I’ = I U {w1} is an independent set in G. .
Necessity: Let I' be an independent set in G.p. If wy € I, then v; ¢ I', thus
I = TI'"\ {w} is an independent set in . Symmetrically, if wy € I’, then v; &€ I,
thus 7 = I' \ {ws} is an independent set in G. If wy,ws & I’ then I = I’ \ {vs} is an
independent set in G. O

THEOREM 3.4. Problem MNDB is NP-complete for 2 x 2 blocks.

Proof. As discussed in the previous section, the problem of finding maximum
number of nonoverlapping dense blocks in a sparse matrix can be reduced to the
problem of finding a maximum independent set in the intersection graph of the ma-
trix, and thus 1s in NP. For the NP-completeness proof we use reduction from the
independent set problem on cubic planar graphs, which is NP-complete [4]. We first
use Theorem 2.3 to embed a cubic planar graph onto a grid. Then we transform the
embedded graph so that it is in XT'. Our transformations preserve independent set
characteristics so that an independent set in the transformed graph can be translated
to an independent set in the original graph. Finally, we use Lemma 2.1 to relate the
independent set problem on a graph in XT', to the MNDB problem, and conclude the
MNDB problem is NP-complete.

Our transformations are local, so we first enlarge the grid to make room for these
transformations. The enlargement operation inserts K new grid points between two
grid points in the original. An example is illustrated in Fig. 3 for K = 1. After the
enlargement, each edge is now replaced by a path of K vertices (which we distinguish
from the original vertices by calling them marks). Two adjacent vertices in the original
graph are now at a distance K + 1, which generates a K x K area around each vertex
for local transformations. In this proof, it 1s sufficient to use K = 100.

We can break down our transformations into 2 steps. The first step guarantees
that the transformed graph is in XT'. For this purpose, we need to have an edge
between all pairs of vertices for which the corresponding blocks overlap so that the
graph is in XTI, and we need to insert vertices into the graph if necessary so that
the closure property is satisfied. The second step makes sure that each edge in the
original graph is replaced by an even-length path after the orthogonal embedding and



8 V. Vassilevska and A. Pinar

o

o o—o0—
Vi Vi Vi1

Fi1G. 3.2. Bend transformation

Fi1G. 3.3. T-junction transformation

transformations. Then we have successfully transformed the independent set problem
on the cubic planar graph to an independent set problem on a graph in XT', and we can
conclude the NP-completeness of the MNDB problem using the result of Lemma 2.1.

We need to consider two cases for the first step. One is a bend neighborhood as
illustrated in Fig. 3.2, and the other is a 7T- junction. As illustrated in Fig. 3.3 a T-
junction is just a neighborhood of a vertex in the original graph. Notice that the only
remaining case is a path of vertices, which does not cause any problems. Consider a
bend v;; connected to two other marks v;_1; and v;;41. Note that v;; cannot be a
vertex in the original graph, since the original graph is cubic. In a graph in XT', there
must be and an edge between v;_1; and v;;41. We can remove v;;, and connect vy
and v;jp as in Fig. 3.2

Now consider a T-junction with vertex v;; at the center, as illustrated in Fig. 3.3.
The neighborhood of v;; is composed of (up to a rotation) v;;_1, vij41, and v;_1 j,
none of which is a vertex in the original graph. As in the case of a bend, the problem
here is the absence of edges between v;;_1 and v;_1 j, and between v;_1 ; and v;;41,
for which the associated blocks will overlap. Also observe that v;; must be a vertex
of the original graph, and cannot be eliminated. We can make the transformation
illustrated in Fig. 3.3, yet the resulting graph is still not in XT', since it has missing
vertices, and does not satisfy the closure property. We can use Corollary 3.2 to add
vertices to the graph as depicted in Fig. 3.4, so that the resulting graph is in XT'.

By Lemma 3.3, we need each path replacing an edge of the planar graph to be
of even length. For each edge going through an odd number of marks we know that
there is a straight line segment going through at least 7 marks, due to the initial
enlargement. We can replace this 7 vertex segment with an 8 vertex segment, to
guarantee that the path representing an edge is of even length. This transformation
is illustrated in Fig. 3.5. After this step, we have a graph in XT' that replaces each
edge in the original graph with an even length path.

Notice that all our transformations require polynomial time and space, thus the



Finding dense blocks of a sparse matrix 9

Vs
. A
X4
% X6
V2
V1

(a) (b) (c)

Fi1G. 3.4. Transformation to preserve closure properties

Fi1G. 3.5. Odd-to-even length transformation to preserve independent set characteristics.

size of the final embedded graph is polynomial in the size of the original graph.

This reduces the independent set problem for cubic planar graphs to an indepen-
dent set problem in a graph in class XT'. By the result of Lemma 2.1, we know the
independent set problem on a graph in XTI is equivalent to a MNDB problem in a
matrix. Thus we reduced the independent set problem for cubic planar graphs to the
MNDB problem, which concludes our proof. O

Our proof serves as a template to prove NP-completeness of alternative substruc-
tures. Below, we generalize our result for arbitrary m x n blocks. In Section 5, we
will use the same template to prove NP-completeness of the MNS problem for cross

blocks.

THEOREM 3.5. Problem MNDB is NP-complete for m x n blocks for m,n > 2.

Proof. The reduction 1s again from the independent set problem on 3-planar
graphs, and our proof uses only a minor modification to the proof of Theorem 3.4.
Given a 3-planar graph G p, we use exactly the same transformation as in Theorem 3.4,
so that we have a graph G = (V, F) € XT3;. What we need a is a graph in XT,,,.
We will map vertices and edges GG, which is on an (M —m+ 1) x (N —n+ 1) grid,
onto an [(M —m+1)(m—1)+ 1] x [(N—n+ 1)(n—1)+ 1] Xn, grid to attain
G'= (V',B") € XTppp. Our mapping stretches the graph so that overlaps of m x n
blocks are minimal. That is blocks on the same row (column) overlap at m x 1 (1 x n)
blocks if they overlap. All other blocks overlap at 1 x 1 blocks at most. Each vertex
in V' is an image of a vertex in V, so that v;; € V is mapped to the vertex position
(ix(m—1),7*%(n—1)in G'. Similarly, all edges in F’ are images of edges in F, so



10 V. Vassilevska and A. Pinar

that two vertices in V'’ are connected if and only if counterparts are connected in G.

The two graphs G and G’ are essentially the same, thus an independent set on
one can be trivially translated to an independent set on the other. Also G' € XT,,,,
since it contains edges for all potential overlaps. This concludes that the independent
set problem on a 3-planar graph can be translated to an independent set problem on
a graph in XT,,,, and thus the MNDB problem on a sparse matrix. O

4. Approximation Algorithms. In this section, we present a 2/3-approximation
algorithm for the MNDB problem for 2 x 2 blocks. Now that we know the problem
is NP-complete, we have to resort to heuristics for a fast and effective solution. Re-
member that our motivation for investigating this problem is speeding up sparse
matrix-vector multiplication. Our methods will be used in a preprocessing phase,
thus they must be fast, for their cost to be amortized by the speedup in subsequent
sparse matrix-vector multiplications.

Berman et al. [2], propose an approximation algorithm for square blocks, which
uses the Lipton-Tarjan planar separator algorithm to get a (1 — €)-approximation,
where € = O(1/+/8logM) in O(n'*?) time, for any 6 > 0, where M is the size of an
optimal solution. Baker [1] gives an (k — 1)/k-approximation, which uses O(8%n) time
and O(4*n) space.

Below we propose a greedy approach for the 2 x 2 case, which in the 1/2-
approximation case is applicable to general m X n rectangular blocks. Unlike the
two algorithms cited, due to its greedy nature it is simple and very easy to imple-
ment. It is pass-efficient, and takes time and space linear in the number of blocks of
the matrix, with very small constant factors in the bounds.

First note that an easy 1/2-approximation to the MNDB problem with 2 x 2
which runs in linear time in the number of blocks, 1s achieved by finding the leftmost
block in the topmost row, adding it to the current independent set, and then repeating
the same operation after removing this vertex and all its neighbors. Note that at most
two of the vertices can be independent among those removed from the graph, thus
we have a 1/2-approximation algorithm. In this section we show how to improve this
approximation result by looking at an extended neighborhood of the leftmost vertex
in the uppermost row. Our algorithm is based on choosing a set of vertices in the
neighborhood of the leftmost vertex in the uppermost row, so that the size of this set
is no less than 2/3 of a maximum independent set in the induced subgraph of those
vertices removed from the graph. Clearly this generates a final solution that is 2/3 of
the optimal, since all greedy decisions are at least 2/3 of the local optimal. Note that
the resulting graph after removing a vertex along with all its neighbors still has the
characteristics of the original as proven in Lemma 2.2

Our decision process BinTreeDecision is depicted as a binary decision tree in
Fig. 4.1. In this tree, internal nodes indicate conditions, and the leaves list the vertices
added to the independent set. We present the pseudocode of the algorithm below.



Finding dense blocks of a sparse matrix 11

Vo
S V1/ 2

/VZ\\ V6
V'V, 4<‘

/ vV, Vo
A {9 ;

\/;
‘ / 8 T
\/9/ \/]-\/5 / 5 V6

/
VV7 vv

Fi1G. 4.1. Deciston tree for algorithm MNDB-APX. v corresponds to the leftmost vertex in the
uppermost row, and the neighboring vertices in the X -grid are marked in Fig. 4.2. We take the left
branch if the label vertex is in V, and the right branch otherwise. We proceed until we reach a leaf,
which contains the set S that will be added in the independent set.

VooV \b Vg9

Fi1G. 4.2. Vertexr neighborhood considered for each call to BinTreeDecision. The positions v;
are used 1n the decision tree, while the positions u; are only used in the analysis.

Algorithm MNDB-APX
I—0
while V #£ (
v «— leftmost vertex on the uppermost row
S — BinTreeDecision(v)
I —I1TUS
remove S and its neighborhood from G
endwhile
return /

LEmMaA 4.1. Algorithm MNDB-APX runs in linear time in the number of blocks
wn the matriz.

Proof. Each iteration of the algorithm requires a traversal of the binary decision
tree from the root to a leaf, which takes at most 8 steps, thus O(1) time. Also at least
one vertex is removed from the graph at each iteration. Thus the time for the decision
process is linear in the number of vertices in the graph. The only other operation that
affects the cost is finding the leftmost vertex in the uppermost row. In a preprocessing
step one can go through the matrix in a left to right fashion and store pointers to the
blocks so that v;; appears before vy iff ¢ < k or ¢ = k and j < . After this it takes



12 V. Vassilevska and A. Pinar

constant time to find the current leftmost vertex on the uppermost row.

LEmMMA 4.2, The size of the mazimal independent set returned by Algorithm
MNDB-APX is no smaller than 2/3 of the size of mazimum independent set on the
wntersection graph.

Proof. The proof is based on case by case analysis. We show that BinTreeDeci-
sion(v) of Fig. 4.1 always returns an independent set S such that N(S) contains no
independent set larger than 1.5 |S|, where N(S) denotes the neighborhood of S, i.e.,
the set of vertices in S or adjacent to a vertex in .S. Below we examine the binary
search tree case by case:

vs €V S = {v}, and v and its neighbors form a clique with MIS size 1.

vs €V
v1 € V' By the closure property v2 € V, and we have the following:
ve € V S = {v}, and v and its neighbors form a clique with MIS size 1.
vg €V
vy €V S ={v,vs}, and N(S) has MIS size at most 3.
vse € V' By the closure property uq € V. In this case, if one of vy or
vg is not in V, then S = {vs, vg}, since their neighborhood
has MIS size at most 3. Otherwise, vs,vg € V:
vy € V' This implies uo € V and:
vio €V S = {vs,v6} and N(S) has MIS size at most 3.
vio €V S ={v,vs,v9,v10}, and N(S5) has MIS size at most 6.

vy €V
vs €V S ={v,vs}, and N(S) has MIS size at most 3.
vs €V S ={v,vr}, and N(S) has MIS size at most 3.

n €V
v €V S ={v,v2}, and N(S5) has MIS size at most 3.
vo € V By the closure property vs ¢ V, and
vr €V S = {v1}, v1 and its neighbors form a clique, and the MIS
is of size 1.
vy €V
vy €V S ={v,vs}, and N(S5) has MIS size at most 3.
vse € V' By the closure property u1 € V', and if one of vg or vg 1s
not in V, then S = {v1,v5}, and N(S) has a MIS size at
most 3. Otherwise if vs,vg € V, then S = {v, vr, vs,v9},
and N(S) has MIS size at most 6.

O

THEOREM 4.3. Algorithm MNDB-APX is a linear time, 2/3-approzimation al-
gorithm for the MNDB problem.

Proof. Follows directly from Lemma 4.1 and Lemma 4.2. 0

Generalization of our 2/3-approximation algorithm for larger blocks is still under
investigation. We expect the runtime and the approximation ratio to depend on the
block size.

5. Alternative Substructures. We have so far focused our discussions on find-
ing dense rectangular blocks in a matrix. In this section, we will discuss generalizations
of our results to alternative substructures that might be exploited to improve memory
performance. We will first discuss diagonal blocks. Then we will introduce a cross
substructure and its variants, and prove that MNS problem is NP-complete for finding
these substructures.

5.1. Diagonal Blocks. In many applications, nonzeros of the sparse matrix are
lined around the main diagonal in the form of long diagonals. This makes diagonal



Finding dense blocks of a sparse matrix 13

(a) (b) (c)

F1G. 5.1. Matriz rotations. (a) the original matriz, (b) after Rotation 1, (c) after Rotation 2.

blocks a nice alternative to rectangular blocks. We define a diagonal block as follows.
Given an M x N matrix A = (a(4, j)), we say d(4,j) is an m x n diagonal block in A
iff

Vil i<l<i+m 0<k<n; al+k,j+k) #0.

To find diagonal blocks in a sparse matrix, we can rotate the diagonals to trans-
form diagonal blocks to rectangular blocks, so that our results for rectangular blocks
can be applied directly. Our rotation is depicted in Fig. 5.1, and we define it as follows.

Rotation 1: Given an M x N matriz A, its rotated matriz Ag isan M + N —1x N
matriz so that A(i,7) Z0 iff ARG+ N—j—1,§) for0<i< M and 0< j < N.

THEOREM 5.1. Given matriz A, let Ay be ils rotated matriz under Rotation 1.
d(i,j) is a diagonal block in A, {ff d(i+ N — j—1,4) is a rectangular block in A;.

Proof. Necessity: Let d(%, j) be a diagonal block in A. By definition of a diagonal
block, and definition of Rotation 1, after transformation, we will have

Vil i<l<i+m; 0<k<n, AA(l+N—-j—-1,j4+k) #0

=V 0<l<m 0<k<n, AGE+N-—j—1+1j+k) #0.

Thus d(i+ N — j — 1) is an m x n rectangular block in A;.
Sufficiency: Let d(i+ N — j — 1,j) be an m x n rectangular block in A;. This
means before Rotation 1 we had,

Vi, 0<li<m; 0<k<n; AG+N—-j—1—-N4+j+1+14+kj+k) #0

=V i<l<i+m 0<k<n, ai(l+k,j+k)#0.

Thus d(4, j) is an m x n rectangular block in A. O
COROLLARY 5.2. Given a matriz A and a positive integer K. The problem of
dectding of A has at least K nonoverlapping diagonal blocks is NP-complete.
CoROLLARY 5.3. Algorithm MNDB-APX is a linear time 2/3-approzimation
algorithm to find maxrimum number of nonoverlapping diagonal blocks.



14 V. Vassilevska and A. Pinar

xr xr xr r X
r r T xr xr

xr xr xr r T

(a) (b) (¢)

r T xr xr

xr r r T r r T
r X xr xr

F1c. 5.2. (a) Cross block, (b) diagonal cross block, (c)-(f) jagged cross blocks

5.2. Cross Blocks. Various regular substructures in a sparse matrix can be
exploited to improve memory performance of sparse matrix computations. One pos-
sibility is the cross blocks depicted in Fig. 5.2(a). We will identify a cross block with
its center, that is we say c(é,j) is a cross block in a matrix A iff A has nonzeros at
positions (¢,7), (4,5 — 1),(¢ = 1,4), (¢,5 + 1), and (i + 1,5). Below, we prove that
finding a maximum number of nonoverlapping cross blocks is NP-complete by using
our proof of Theorem 3.4 as a template.

THEOREM 5.4. Given a matriz A and a positive integer K. The problem of
dectding if A has at least K nonoverlapping cross blocks is NP-complete.

Proof. It is easy to see that this problem can be reduced to the independent set
problem, and thus it is in NP. For the NP-completeness proof we use a reduction from
the independent set problem on cubic planar graphs. First we use Theorem 2.3 to
embed the cubic planar graph onto a grid and then enlarge the grid by 20 as we did for
the proof of Theorem 3.4. We can replace each vertex on this grid with a cross pattern
in the matrix. Formally, for an M x N grid, we define a 2M + 1 x 2N 4 1 matrix,
where grid point (7, j) is replaced by a cross centered at (2i+ 1,25+ 1) in the matrix.
A does not have any other nonzeros besides those in cross blocks corresponding to
vertex points. Observe that there are no cross blocks in A, besides those representing
grid points. Also observe that unlike the case for rectangular blocks, bends and T-
junctions do not cause any problems, since the cross to the left and below the corner
vertex of a bend do not overlap.

The only problem is to make sure each edge in G is replaced by an even length
path. For this purpose we use the transformation illustrated in Fig. 5.3. Observe that
this transformation replaces a chain of odd length with a chain of even length, and
consequently making sure of edges in (i are replaced with even length paths. O

We can use matrix rotations to reduce the problems of finding other blocks in
Fig. 5.2(b—f) to the problem of finding cross blocks as in Fig. 5.2(a). For instance,
Rotation 1 transforms jagged crosses, which are illustrated in Fig. 5.2(c) to regular
crosses.

THEOREM bH.5. Guwven matriz A, let Ay be its rotated matriz under Rotation 1.
c(i,j) is a diagonal cross block in A, iff c(i+ N —j —1,4) is a cross block in A;.

Proof. The proof only requires applying Rotation 1 to the definition a cross block
as for the proof of Theorem 5.1. O

COROLLARY 5.6. Given a matriz A, and a positive integer K. The problem of



Finding dense blocks of a sparse matrix 15

xr xr xr xr
r x I r r xr X X T T
xr xr r Tr T X
r x I xr
xr xr r Tr T X
r x I r r xr X X T T
xr xr xr xr

Fi1G. 5.3. Odd- to even-length path transformation for cross blocks.

dectding if A contains at least K nonoverlapping jagged cross blocks is NP-complete.

Similar transformation operators can be transformed for variations of the jagged
cross block in Fig. 5.2(d—f). Now we introduce a new rotation operator to transform
diagonal cross blocks of Fig. 5.2(b) to regular cross blocks. This rotation is depicted
in Fig. 5.1 and below we define it formally.

Rotation 2: Given an M x N matriz A, its rotated matrizc Ag i1s an M + N — 1 x
M + N — 1 matriz so that A(i,j) Z0 iff AR(i—j+ N —1,i+j) for0<i< M and
0<j<N.

THEOREM b5.7. Given matriz A, let Ay be ils rotated matriz under Rotation 2.
c(i,j) is a diagonal cross block in A, iff c(i+ N —1—j,i+j) is a cross block in As.

Proof. The proof only requires applying Rotation 2 to the definition a cross block.
O

COROLLARY 5.8. Given a matriz A, and a positive integer B. The problem of
dectding if A contains at least B nonoverlapping diagonal cross blocks is NP-complete.

Observe that a greedy algorithm that chooses the leftmost block in the upper
most row will yield a 1/2 approximation algorithm for finding cross blocks, and all its
variations.

6. Open Problems. This work studies a new problem for the sparse matrix
computations community, and brings forth many open problems. One interesting
family of problems is the design of heuristics for larger blocks and different substruc-
tures, and developing better approximation algorithms. As we discussed in Section 4,
our 2/3-approximation algorithm might be generalized for larger blocks, where the
runtime complexity will depend on the block size. Another interesting question 1s if
it would be possible to improve the approximation ratio by looking at a larger neigh-
borhood of the leftmost vertex of the uppermost row. Finally, different substructures
require different heuristics. For instance the neighborhood structure of the cross block
is fairly different than that of the rectangular block, and thus our 2/3-approximation
algorithm cannot be applied directly.



16 V. Vassilevska and A. Pinar

Another approach to reduce memory indirections is replacing structural nonze-
ros of the matrix with numerical zeros. As shown in [10], by selectively replacing
structural zeros with numerical zeros, it is possible to gain significant speedups due
to better memory performance, even though the number of floating point operations
increase. This technique calls for another interesting combinatorial problem. In this
case, we need to choose blocks to make sure all nonzeros are covered, and we try to
do this by using as few blocks as possible. We call this problem the minimum block
cover problem, and define 1t as follows.

Given a sparse matriz A, and an oriented substructure o, place min-

imum number of substructures on A, so that all its nonzeros are

covered.
Notice that this problem is a covering problem, whereas the maximum nonoverlap-
ping substructures problem was an independent set problem. However, the relation
between the two problems is not as clear as the relation between the independent set,
and vertex cover problems on graphs.

Finally, in this paper we considered finding only one specified structure in the
matrix. However it is possible to split a matrix into three or more matrices (e.g.,
A= A2+ AL + Aj, so that each matrix contains a different substructure. In such a
decomposition, the objective will be minimizing the total number of blocks in all ma-
trices. Clearly, this problem is much harder, and even good approximation algorithms
(provably or practically) will be valuable.

7. Conclusions. We studied the problem of finding maximum number of nonover-
lapping substructures in a sparse matrix, which we called the mazimum nonoverlap-
ping substructures problem. Such substructures can be exploited to improve memory
performance of sparse matrix operations by reducing the number of memory indirec-
tions. We focused on m x n dense blocks as a substructure (maximum nonoverlapping
dense blocks problem) due to their availability in sparse matrices arising in various ap-
plications, and effectiveness in decreasing extra load operations. We investigated the
relation between the maximum independent set problem and the maximum nonover-
lapping substructures problem, and defined a class of graphs where the independent
set problem is equivalent to the maximum nonoverlapping dense blocks problem. We
used this relation to prove the NP-completeness of the maximum nonoverlapping dense
blocks problem. Our proof used a reduction from the maximum independent set prob-
lem on cubic planar graphs and adopted orthogonal drawings of planar graphs. We
also presented an approximation algorithm for the maximum nonoverlapping dense
blocks problem for 2 x 2 blocks. Our algorithm require only linear time and space, and
generate solutions whose sizes are within 2/3 of the optimal. We also described a 1/2
approximation algorithm that work for larger blocks and different substructures. We
discussed generalizations of our results to different substructures and observed the re-
lation between diagonal blocks and rectangular blocks to show that the two problems
are equivalent and one can be reduced to the other by a matrix transformation. We
also discussed cross blocks and proved that MNS problem is NP-complete for cross

blocks.

REFERENCES

[1] B. Baker, Approximation algorithms for NP-complete problems on planar graphs, Proc. 24th
IEEE Symp. on Foundations of Computer Science (1983), pages 265—273.

[2] F. Berman, D. Johnson, T. Leighton, P. Shor, L..Snyder, Generalized planar matching, Journal
of Algorithms 11, (1990), pages 153-184.



Finding dense blocks of a sparse matrix 17

H. de Fraysseix, J. Pach, R. Pollack, How to draw a planar graph on a grid, Combinatorica,
10 (1990), pages 41-51.

M. Garey and D. Johnson, Computers and intractability: A guide to the theory of NP-
completeness, W.H. Freeman and Co., 1979.

E. Im, K. Yelick, R. Vuduc, SPARSITY: An Optimization Framework for Sparse Matrix Ker-
nels, International Journal of High Performance Computing Applications, 18 (1), 2004,
to appear.

G. Kant, Drawing planar graphs using the canonical ordering, Algorithmica, 16, (1996), pages
4-32.

A. Papakostas and I. Tollis, Algorithms for area-efficient orthogonal drawings. Computational
Geometry 9 (1998), pages 83-110.

A. Pmar, M. Heath, Improving performance of sparse matrix vector multiplication, Proc.
IEEE/ACM Conf. on Supercomputing 1999, Portland, OR, November (1999) .

S. Toledo, Improving the memory-system performance of sparse matrix vector multiplication,
IBM Journal of Research and Development, 41 (6), 1997.

R. Vuduc, J. Demmel, K. Yelick, S. Kamil, R. Nishtala, B. Lee, Performance Optimizations
and Bounds for Sparse Matrix-Vector Multiply Proc. IEEE/ACM Conf. on Supercomputing
2002, Baltimore, MD, USA, November (2002).



